Pytorch深度强化学习(3):详解K摇臂赌博机模型和ϵ-贪心算法

news/2024/5/18 22:53:22 标签: pytorch, 人工智能, 强化学习, 机器人, python

目录

1 K-摇臂赌博机

单步强化学习是最简单的强化学习模型,其以贪心策略为核心最大化单步奖赏

如图所示,单步强化学习的理论模型是 K K K-摇臂赌博机( K K K-armed bandit),描述如下: K K K-摇臂赌博机有 K K K个摇臂,赌徒在投入一个硬币后可选择按下其中一个摇臂,每个摇臂以一定的概率吐出硬币(硬币数量来自一个赌徒未知的概率分布),因此仅通过一次试验并不能确切地了解摇臂的奖赏期望,赌徒的目标是通过一定的策略最大化自己的奖赏,即获得最多的硬币。 K K K-摇臂赌博机问题抽象为强化学习任务后,摇臂即为某个状态下对应的 K K K个动作;硬币即为该状态下执行某动作后的奖赏值


在这里插入图片描述

针对 K K K-摇臂赌博机问题有两种思路:

  • 仅探索法(exploration-only):将所有的尝试机会平均分配给每个摇臂,即轮流按下每个摇臂若干次,最后以每个摇臂各自的平均吐币数作为奖赏期望的近似估计;
  • 仅利用法 (exploitation-only):按下目前最优的——到目前为止平均奖赏最大的摇臂,若有多个摇臂同为最优,则从中随机选取一个

以上两种思路相互矛盾,构成强化学习所面临的探索-利用窘境(Exploration-Exploitation dilemma):仅探索法能很好地估计每个摇臂的性能,却会失去很多选择最优摇臂的机会;仅利用法局部性能较好,但因为过于贪心无法衡量各个摇臂,因此很可能选不到最优摇臂。这两种思路都难以使最终的累积奖赏最大化,欲使累积奖赏最大,则必须在探索与利用之间达成较好的折中。

在这里插入图片描述

K K K-摇臂赌博机应用在离散状态空间、动作空间上一般强化学习任务的方式是:将每个状态上动作的选择看作一个 K K K-摇臂赌博机问题,对每个状态分别记录各动作的尝试次数、当前平均累积奖赏等信息,训练一定次数后,即可基于赌博机算法进行动作决策。但是这种做法没有考虑强化学习任务马尔科夫决策过程的结构,具有局限性

2 ϵ \epsilon ϵ-贪心算法

ϵ \epsilon ϵ-贪心算法基于一个概率 ϵ \epsilon ϵ来对探索和利用进行折中:每次尝试时以 ϵ \epsilon ϵ的概率进行探索,此时以均匀概率随机选取一个动作;以 1 − ϵ 1-\epsilon 1ϵ的概率进行利用,此时选择当前平均奖赏最高的动作(若有多个,则随机选取一个)。若动作奖赏的不确定性较大则需更多的探索,此时需要较大的 ϵ \epsilon ϵ值;反之若动作奖赏的不确定性较小,则少量的尝试就能很好地近似真实奖赏,此时需要较小的 ϵ \epsilon ϵ值即可。通常可令 ϵ \epsilon ϵ随尝试次数的增加而逐渐减小,例如令

ϵ = 1 / t \epsilon ={{1}/{\sqrt{t}}} ϵ=1/t

在这里插入图片描述

3 softmax算法

Softmax算法基于当前已知的动作平均奖赏来对探索和利用进行折中:若各动作的平均奖赏相当,则选取各动作的概率也相当;若某些动作的平均奖赏明显高于其他动作,则它们被选取的概率也明显更高。其中温度 τ > 0 \tau >0 τ>0趋于0算法趋于仅利用;趋于无穷大算法趋于仅探索。

在这里插入图片描述

4 Python实现与分析

首先我们先模拟一个 K K K-摇臂赌博机

python">class Bandit:
    def __init__(self) -> None:
        self.k = 0
        self.handler = []
    
    # @breif:添加摇臂
    def addHandler(self, pList, vList):
        h = BanditHandler(pList, vList)
        self.handler.append(h)
        self.k = self.k + 1
    
    # @breif:删除摇臂
    def delHandler(self, i):
        if i > self.k - 1:
            print("handler index i is invalid! i should be less than k!")
        else:          
            self.handler.pop(i)
            self.k = self.k - 1  

    # @breif: 选择摇臂i并弹出奖赏
    def getReward(self, i):
        if i > self.k - 1:
            print("handler index i is invalid! i should be less than k!")
        else:          
            return self.handler[i].pull()

接着实现上述的四种算法

  • 仅探索法

    python">def explorationOnly(self, T):
        # 累计奖赏
        r = 0
        rList = []
        # 完全随机选取摇臂
        for i in range(T):
            hIndex = random.randint(0, self.kBandit.k - 1)
            r = r + self.kBandit.handler[hIndex].pull()
            rList.append(r / (i + 1))
        return rList
    
  • 仅利用法

    python">def exploitationOnly(self, T):
        # 累计奖赏
        r = 0
        rList = []
        # 各摇臂平均奖赏初始化
        g = [0 for i in range(self.kBandit.k)]
        # 各摇臂选中次数初始化
        count = [0 for i in range(self.kBandit.k)]
        for i in range(T):
            hIndex = g.index(max(g))
            v = self.kBandit.handler[hIndex].pull()
            r = r + v
            g[hIndex] = (g[hIndex] * count[hIndex] + v) / (count[hIndex] + 1)
            count[hIndex] = count[hIndex] + 1
            rList.append(r / (i + 1))
        return rList
    
  • ϵ \epsilon ϵ-贪心算法

    python">def eGredy(self, T, e):
        # 累计奖赏
        r = 0
        rList = []
        # 各摇臂平均奖赏初始化
        g = [0 for i in range(self.kBandit.k)]
        # 各摇臂选中次数初始化
        count = [0 for i in range(self.kBandit.k)]
        for i in range(T):
            if random.random() < e:
                hIndex = random.randint(0, self.kBandit.k - 1)
            else:
                hIndex = g.index(max(g))
            v = self.kBandit.handler[hIndex].pull()
            r = r + v
            g[hIndex] = (g[hIndex] * count[hIndex] + v) / (count[hIndex] + 1)
            count[hIndex] = count[hIndex] + 1
            rList.append(r / (i + 1))
        return rList
    

在本案例中,各个算法计算迭代若干次后的平均奖励曲线如图所示

在这里插入图片描述

本文完整工程代码请通过下方名片联系博主获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

http://www.niftyadmin.cn/n/513510.html

相关文章

s数据结构---耿国华版(课设4)---二叉树的遍历

要求&#xff1a; 1.编写函数,输入字符序列,建立二叉树的二叉链表 2.编写函数,实现二叉树的中序递归遍历算法。 3.编写函数,实现二叉树的中序非递归遍历算法 4.编写函数,借助队列实现二叉树的层次遍历算法 5.编写函数,求二叉树的高度 6.编写函数,求二叉树的结点个数 7.编写函数…

.net 内嵌 GeckoWebBrowser (firefox) 核心浏览器

引用nuget包&#xff1a; 注意&#xff1a;Geckofx45 nuget包必须是最后引用&#xff0c;否则初始化会出错 简单示例&#xff1a; using Gecko; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; usin…

数据结构---耿国华版(课设5)---折半查找

要求&#xff1a; 1.编写函数,建立有序表,采用折半查找实现某一已知的关键字的查找(采用顺序表存储结构) 2.编写函数,随机产生一组关键字,利用二叉排序树的插入算法建立二叉排序树 3.编写函数,在以上二叉排序树中删除某一指定关键字元素 4.编写一个主函数,在主函数中设计一个简…

React Design Editor 图像/视频在线编辑器;2022阿里天池冠军方案[1/1149];计算机优秀课程大集锦;贝叶斯统计课程资料;前沿论文 | ShowMeAI资讯日报

&#x1f440;日报合辑 | &#x1f4c6;电子月刊 | &#x1f514;公众号下载资料 | &#x1f369;韩信子 工具&框架 &#x1f6a7; 『React Design Editor』开源版 Canva&#xff0c;图像/视频在线编辑器 https://github.com/layerhub-io/react-design-editor https://e…

maven项目板块的pom.xml配置

项目名为helloweb 项目文件结构图1 helloweb>pom.xml内容如下&#xff1a; <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 …

CentOS运维常用技能

1、添加系统帐号 [rootlocalhost ~]# adduser gordon [rootlocalhost ~]# passwd gordon  //新帐号添加密码&#xff0c;然后输入密码就完成了。修改原有帐号&#xff0c;直接输入passwd 2、普通系统帐号添加root权限 visudo命令是用vim编辑修改/etc/sudoers配置文件 …

mem***系列函数

内存操作函数&#xff1a; memcpy menmove memset memcmp 一、memcpy – #include<string.h> void * memcpy ( void * destination, const void * source, size_t num ) 任意类型字符拷贝,将num个字节的值从source指向的位置直接复制到destination指向的存储块;函数遇到…

C之杨氏矩阵

有一个数字矩阵&#xff0c;矩阵的每行从左到右是递增的&#xff0c;矩阵从上到下是递增的&#xff0c;请编写程序在这样的矩阵中查找某个数字是否存在。 int Find(int a[][5], int row, int col, int target) {int i 0;int j col - 1;while (i < row && j > …