【强化学习】13 —— Actor-Critic 算法

news/2024/5/18 23:51:25 标签: 算法, 人工智能, 强化学习, 机器学习

文章目录

  • REINFORCE 存在的问题
  • Actor-Critic
  • A2C: Advantageous Actor-Critic
  • 代码实践
    • 结果
  • 参考

REINFORCE 存在的问题

  • 基于片段式数据的任务
    • 通常情况下,任务需要有终止状态,REINFORCE才能直接计算累计折扣奖励
  • 低数据利用效率
    • 实际中,REINFORCE需要大量的训练数据
  • 高训练方差(最重要的缺陷
    • 从单个或多个片段中采样到的值函数具有很高的方差

Actor-Critic

在 REINFORCE 算法中,目标函数的梯度中有一项轨迹回报,用于指导策略的更新。REINFOCE 算法用蒙特卡洛方法来估计 Q ( s , a ) Q(s,a) Q(s,a),能不能考虑拟合一个值函数来指导策略进行学习呢?这正是 Actor-Critic 算法所做的。
在这里插入图片描述
评论家Critic Q Φ ( s , a ) Q_\Phi (s,a) QΦ(s,a):

  • 学会准确估计当前演员策略(actor policy)的动作价值。通过 Actor 与环境交互收集的数据学习一个价值函数,这个价值函数会用于判断在当前状态什么动作是好的,什么动作不是好的,进而帮助 Actor 进行策略更新。 Q Φ ( s , a ) ≃ r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) , a ′ ∼ π θ ( a ′ ∣ s ′ ) [ Q Φ ( s ′ , a ′ ) ] Q_\Phi(s,a)\simeq r(s,a)+\gamma\mathbb{E}_{s^{\prime}\thicksim p(s^{\prime}|s,a),a^{\prime}\thicksim\pi_\theta(a^{\prime}|s^{\prime})}[Q_\Phi(s^{\prime},a^{\prime})] QΦ(s,a)r(s,a)+γEsp(ss,a),aπθ(as)[QΦ(s,a)]

演员Actor π θ ( s , a ) \pi_\theta(s,a) πθ(s,a):

  • 要做的是与环境交互,并在 Critic 价值函数的指导下用策略梯度学习一个更好的策略。 J ( θ ) = E s ∼ p , π θ [ π θ ( a ∣ s ) Q Φ ( s , a ) ] ∂ f ( θ ) ∂ θ = E π θ [ ∂ log ⁡ π θ ( a ∣ s ) ∂ θ Q Φ ( s , a ) ] \begin{aligned}J(\theta)&=\mathbb{E}_{s\sim p,\pi_\theta}[\pi_\theta(a|s)Q_\Phi(s,a)]\\\\\frac{\partial f(\theta)}{\partial\theta}&=\mathbb{E}_{\pi_\theta}\left[\frac{\partial\log\pi_\theta(a|s)}{\partial\theta}Q_\Phi(s,a)\right]\end{aligned} J(θ)θf(θ)=Esp,πθ[πθ(as)QΦ(s,a)]=Eπθ[θlogπθ(as)QΦ(s,a)]

A2C: Advantageous Actor-Critic

思想:通过减去一个基线函数来标准化评论家的打分

  • 更多信息指导:降低较差动作概率,提高较优动作概率
  • 进一步降低方差

优势函数(Advantage Function) A π ( s , a ) = Q π ( s , a ) − V π ( s ) A^\pi(s,a)=Q^\pi(s,a)-V^\pi(s) Aπ(s,a)=Qπ(s,a)Vπ(s)
在这里插入图片描述
若只采用动作值的方式,虽然也会选择A2,但是方差相对会更大,同时所有的动作都是出于上升的状态,只是上升程度的问题。而采用优势函数的方式,部分动作的优势函数值是负的,可以直接降低相应动作的概率,同时方差更小。

状态-动作值和状态值函数 Q π ( s , a ) = r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) , a ′ ∼ π θ ( a ′ ∣ s ′ ) [ Q Φ ( s ′ , a ′ ) ] = r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) [ V π ( s ′ ) ] \begin{aligned} Q^{\pi}(s,a)& =r(s,a)+\gamma\mathbb{E}_{s^{\prime}\sim p(s^{\prime}|s,a),a^{\prime}\sim\pi_\theta(a^{\prime}|s^{\prime})}\left[Q_\Phi(s^{\prime},a^{\prime})\right] \\ &=r(s,a)+\gamma\mathbb{E}_{s^{\prime}\sim p(s^{\prime}|s,a)}[V^{\pi}(s^{\prime})] \end{aligned} Qπ(s,a)=r(s,a)+γEsp(ss,a),aπθ(as)[QΦ(s,a)]=r(s,a)+γEsp(ss,a)[Vπ(s)]

因此我们只需要拟合状态值函数来拟合优势函数 A π ( s , a ) = Q π ( s , a ) − V π ( s ) = r ( s , a ) + γ E s ′ ∼ p ( s ′ ∣ s , a ) [ V π ( s ′ ) − V π ( s ) ] ≃ r ( s , a ) + γ ( V π ( s ′ ) − V π ( s ) ) \begin{aligned} A^{\pi}(s,a)& =Q^\pi(s,a)-V^\pi(s) \\ &=r(s,a)+\gamma\mathbb{E}_{s^{\prime}\sim p(s^{\prime}|s,a)}[V^{\pi}(s^{\prime})-V^{\pi}(s)] \\ &\simeq r(s,a)+\gamma(V^{\pi}(s^{\prime})-V^{\pi}(s)) \end{aligned} Aπ(s,a)=Qπ(s,a)Vπ(s)=r(s,a)+γEsp(ss,a)[Vπ(s)Vπ(s)]r(s,a)+γ(Vπ(s)Vπ(s))


在策略梯度中,可以把梯度写成下面这个更加一般的形式: g = E [ ∑ t = 0 T ψ t ∇ θ log ⁡ π θ ( a t ∣ s t ) ] g=\mathbb{E}\left[\sum_{t=0}^T\psi_t\nabla_\theta\log\pi_\theta(a_t|s_t)\right] g=E[t=0Tψtθlogπθ(atst)]其中, ψ t \psi_t ψt可以有很多种形式: 1. ∑ t ′ = 0 T γ t ′ r t ′ : 轨迹的总回报; 2. ∑ t ′ = t T γ t ′ − t r t ′ : 动作 a t 之后的回报; 3. ∑ t ′ = t T γ t ′ − t r t ′ − b ( s t ) : 基准线版本的改进 ; 4. Q π θ ( s t , a t ) : 动作价值函数; 5. A π θ ( s t , a t ) : 优势函数; 6. r t + γ V π θ ( s t + 1 ) − V π θ ( s t ) : 时序差分残差。 \begin{aligned} &1.\sum_{t^{\prime}=0}^T\gamma^{t^{\prime}}r_{t^{\prime}}:\textit{轨迹的总回报;} \\ &2.\sum_{t^{\prime}=t}^T\gamma^{t^{\prime}-t}r_{t^{\prime}}:\textit{动作}a_t\textit{之后的回报;} \\ &\begin{aligned}3.\sum_{t^{\prime}=t}^T\gamma^{t^{\prime}-t}r_{t^{\prime}}-b(s_t):\textit{基准线版本的改进};\end{aligned} \\ &4.Q^{\pi_\theta}(s_t,a_t):\textit{动作价值函数;} \\ &5.A^{\pi_\theta}(s_t,a_t):\textit{优势函数;} \\ &6.r_t+\gamma V^{\pi_\theta}(s_{t+1})-V^{\pi_\theta}(s_t):\textit{时序差分残差。} \end{aligned} 1.t=0Tγtrt:轨迹的总回报;2.t=tTγttrt:动作at之后的回报;3.t=tTγttrtb(st):基准线版本的改进;4.Qπθ(st,at):动作价值函数;5.Aπθ(st,at):优势函数;6.rt+γVπθ(st+1)Vπθ(st):时序差分残差。

REINFORCE 通过蒙特卡洛采样的方法对策略梯度的估计是无偏的,但是方差非常大。我们可以用形式(3)引入基线函数 b ( s t ) b(s_t) b(st)(baseline function)来减小方差。此外,我们也可以采用 Actor-Critic 算法估计一个动作价值函数 Q Q Q,代替蒙特卡洛采样得到的回报,这便是形式(4)。这个时候,我们可以把状态价值函数 V V V作为基线,从 Q Q Q函数减去这个 V V V函数则得到了 A A A函数,我们称之为优势函数(advantage function),这便是形式(5)。更进一步,我们可以利用等式 Q = r + γ V Q=r+\gamma V Q=r+γV得到形式(6)。

Actor 的更新采用策略梯度的原则,那 Critic 如何更新呢?我们将 Critic 价值网络表示为 V ω V_\omega Vω,参数为 ω \omega ω。于是,我们可以采取时序差分残差的学习方式,对于单个数据定义如下价值函数的损失函数: L ( ω ) = 1 2 ( r + γ V ω ( s t + 1 ) − V ω ( s t ) ) 2 \mathcal{L}(\omega)=\frac12(r+\gamma V_\omega(s_{t+1})-V_\omega(s_t))^2 L(ω)=21(r+γVω(st+1)Vω(st))2

与 DQN 中一样,我们采取类似于目标网络的方法,将上式中 r + γ V ω ( s t + 1 ) r+\gamma V_\omega(s_{t+1}) r+γVω(st+1)作为时序差分目标,不会产生梯度来更新价值函数。因此,价值函数的梯度为:
∇ ω L ( ω ) = − ( r + γ V ω ( s t + 1 ) − V ω ( s t ) ) ∇ ω V ω ( s t ) \nabla_{\omega}\mathcal{L}(\omega)=-(r+\gamma V_{\omega}(s_{t+1})-V_{\omega}(s_{t}))\nabla_{\omega}V_{\omega}(s_{t}) ωL(ω)=(r+γVω(st+1)Vω(st))ωVω(st)

然后使用梯度下降方法来更新 Critic 价值网络参数即可。

算法伪代码:

在这里插入图片描述

代码实践

import gymnasium as gym
import numpy as np
from tqdm import tqdm
import torch
import torch.nn.functional as F
import util

class PolicyNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim, action_dim):
        super(PolicyNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, action_dim)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return F.softmax(self.fc2(x), dim=1)

# 输入是某个状态,输出则是状态的价值。
class ValueNet(torch.nn.Module):
    def __init__(self, state_dim, hidden_dim):
        super(ValueNet, self).__init__()
        self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
        self.fc2 = torch.nn.Linear(hidden_dim, 1)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        return self.fc2(x)

class ActorCritic:
    def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr, gamma,
                device, numOfEpisodes, env):
        self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)
        self.critic = ValueNet(state_dim, hidden_dim).to(device)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.gamma = gamma
        self.device = device
        self.env = env
        self.numOfEpisodes = numOfEpisodes

    # 根据动作概率分布随机采样
    def takeAction(self, state):
        state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)
        action_probs = self.actor(state)
        action_dist = torch.distributions.Categorical(action_probs)
        action = action_dist.sample()
        return action.item()

    def update(self, transition_dict):
        states = torch.tensor(np.array(transition_dict['states']), dtype=torch.float).to(self.device)
        actions = torch.tensor(transition_dict['actions']).view(-1, 1).to(self.device)
        rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1, 1).to(self.device)
        next_states = torch.tensor(np.array(transition_dict['next_states']), dtype=torch.float).to(self.device)
        terminateds = torch.tensor(transition_dict['terminateds'], dtype=torch.float).view(-1, 1).to(self.device)
        truncateds = torch.tensor(transition_dict['truncateds'], dtype=torch.float).view(-1, 1).to(self.device)
        # 时序差分目标
        td_target = rewards + self.gamma * self.critic(next_states) * (1 - terminateds + truncateds)
        # 时序差分误差
        td_delta = td_target - self.critic(states)
        log_probs = torch.log(self.actor(states).gather(1, actions))
        # 均方误差损失函数
        actor_loss = torch.mean(-log_probs * td_delta.detach())
        critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
        self.actor_optimizer.zero_grad()
        self.critic_optimizer.zero_grad()
        actor_loss.backward()
        critic_loss.backward()
        self.actor_optimizer.step()
        self.critic_optimizer.step()

    def ACTrain(self):
        returnList = []
        for i in range(10):
            with tqdm(total=int(self.numOfEpisodes / 10), desc='Iteration %d' % i) as pbar:
                for episode in range(int(self.numOfEpisodes / 10)):
                    # initialize state
                    state, info = self.env.reset()
                    terminated = False
                    truncated = False
                    episodeReward = 0
                    transition_dict = {
                        'states': [],
                        'actions': [],
                        'next_states': [],
                        'rewards': [],
                        'terminateds': [],
                        'truncateds': []
                    }
                    # Loop for each step of episode:
                    while 1:
                        action = self.takeAction(state)
                        next_state, reward, terminated, truncated, info = self.env.step(action)
                        transition_dict['states'].append(state)
                        transition_dict['actions'].append(action)
                        transition_dict['next_states'].append(next_state)
                        transition_dict['rewards'].append(reward)
                        transition_dict['terminateds'].append(terminated)
                        transition_dict['truncateds'].append(truncated)
                        state = next_state
                        episodeReward += reward
                        if terminated or truncated:
                            break
                    self.update(transition_dict)
                    returnList.append(episodeReward)
                    if (episode + 1) % 10 == 0:  # 每10条序列打印一下这10条序列的平均回报
                        pbar.set_postfix({
                            'episode':
                                '%d' % (self.numOfEpisodes / 10 * i + episode + 1),
                            'return':
                                '%.3f' % np.mean(returnList[-10:])
                        })
                    pbar.update(1)
        return returnList

结果

在这里插入图片描述
在这里插入图片描述
可以发现,Actor-Critic 算法很快便能收敛到最优策略,并且训练过程非常稳定,抖动情况相比 REINFORCE 算法有了明显的改进,这说明价值函数的引入减小了方差。

参考

[1] 伯禹AI
[2] https://www.davidsilver.uk/teaching/
[3] 动手学强化学习
[4] Reinforcement Learning


http://www.niftyadmin.cn/n/5138506.html

相关文章

【Java 进阶篇】深入理解 Java Response:从基础到高级

HTTP响应(Response)是Web开发中的一个关键概念,它是服务器向客户端(通常是浏览器)返回数据的方式。理解如何在Java中处理和构建HTTP响应是开发Web应用程序的重要一部分。本文将从基础知识到高级技巧,详细介…

MATLAB——多层小波的重构

%% 学习目标:多层小波的重构 %% 程序1 clear all; close all; load noissin.mat; xnoissin; [C,L]wavedec(x,3,db1); %小波多层分解 ywaverec(C,L,db1); %重构,必须小波类型一致 emax(abs(x-y)) %重构的误差 %% 程序2 clear all;…

python 练习 在列表元素中合适的位置插入 输入值

目的: 有一列从小到大排好的数字元素列表, 现在想往其插入一个值,要求: 大于右边数字小于左边数字 列表元素: [1,4,6,13,16,19,28,40,100] # 方法: 往列表中添加一个数值,其目的方便元素位置往后…

【Linux】常见指令以及具体其使用场景

君兮_的个人主页 即使走的再远,也勿忘启程时的初心 C/C 游戏开发 Hello,米娜桑们,这里是君兮_,随着博主的学习,博主掌握的技能也越来越多,今天又根据最近的学习开设一个新的专栏——Linux,相信Linux操作系…

在Java和PostgreSQL枚举之间进行转换的通用方法

枚举类型(enum)是一种方便的数据类型,允许我们指定一个常量列表,对象字段或数据库列可以设置为该列表中的值。 枚举的美妙之处在于我们可以通过提供人类可读格式的枚举常量来确保数据完整性。因此,Java和PostgreSQL原…

(四)docker:为mysql和java jar运行环境创建同一网络,容器互联

看了很多资料,说做互联的一个原因是容器内ip不固定,关掉重启后如果有别的容器启动,之前的ip会被占用,所以做互联创建一个网络,让几个容器处于同一个网络,就可以互联还不受关闭再启动ip会改变的影响&#xf…

python之pytorch多进程

目录 1、创建并运行并行进程 2、使用队列(Queue)来共享数据 3、进程池 4、进程锁 5、比较使用多进程和使用单进程执行一段代码的时间消耗 6、共享变量 多进程是计算机科学中的一个术语,它是指同时运行多个进程,这些进程可以…

Ubuntu python 安装 openslide

apt-get install openslide-tools apt-get install python3-openslide pip install openslide_python