强化学习的数学原理学习笔记 - 策略梯度(Policy Gradient)

文章目录

  • 概览:RL方法分类
  • 策略梯度(Policy Gradient)
    • Basic Policy Gradient
      • 目标函数1:平均状态值
      • 目标函数2:平均单步奖励
      • 🟡PG梯度计算
    • 🟦REINFORCE


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:

参考资料:

  1. 强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

策略梯度(Policy Gradient)

在先前的内容中,策略用表(tabular)的形式进行表达,其也可以用函数的形式进行表达(尤其是当状态空间或动作空间连续或非常大时),优势在于降低存储开销和提升泛化能力。

之前的方法(值函数近似)称之为Value-based,而策略梯度(Policy Gradient)和Actor-Critic均为Policy-based。Value-based方法围绕状态值/动作值设计,而Policy-based优化关于策略的目标函数,从而直接得到最优策略。

Basic Policy Gradient

将策略表示为参数化函数: π ( a ∣ s , θ ) \pi(a|s, \theta) π(as,θ),其中 θ ∈ R m \theta \in \mathbb{R} ^m θRm为参数向量, π \pi π是关于 θ \theta θ的函数。
*其他写法: π ( a , s , θ ) \pi(a,s, \theta) π(a,s,θ) π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as) π θ ( a , s ) \pi_\theta(a,s) πθ(a,s)

与tabular representation的区别:

  1. 最优策略:不是能够最大化每个状态值的策略,而是能够最大化特定scalar metrics的策略
  2. 动作概率:不能直接获取,需要进行计算
  3. 策略更新:不能直接更新,需要通过改变参数 θ \theta θ来进行改变

策略梯度方法通过优化指定目标函数 J ( θ ) J(\theta) J(θ),直接得到最优策略:
θ t + 1 = θ t + α ∇ θ J ( θ t ) \theta_{t+1} = \theta_t + \alpha \nabla_\theta J(\theta_t) θt+1=θt+αθJ(θt)
目标函数 J ( θ ) J(\theta) J(θ)通常有以下两种类型:平均状态值 v ˉ π \bar{v}_\pi vˉπ和平均单步奖励 r ˉ π \bar{r}_\pi rˉπ。实际上,当奖励折扣值 γ < 1 \gamma<1 γ<1时,二者是等价的: r ˉ π = ( 1 − γ ) v ˉ π \bar{r}_\pi = (1- \gamma) \bar{v}_\pi rˉπ=(1γ)vˉπ

目标函数1:平均状态值

平均状态值(average state value / average value):
v ˉ π = ∑ s ∈ S d ( s ) v π ( s ) = E [ v π ( S ) ] \bar{v}_\pi = \sum_{s\in{\mathcal{S}}} d(s) v_\pi(s) = \mathbb{E}[v_\pi(S)] vˉπ=sSd(s)vπ(s)=E[vπ(S)]
其中, d ( s ) ≥ 0 d(s) \geq 0 d(s)0 ∑ s ∈ S d ( s ) = 1 \textstyle\sum_{s\in{\mathcal{S}}} d(s) =1 sSd(s)=1,因此 d ( s ) d(s) d(s)既可以看作是状态 s s s的权重,也可以看作是随机变量 S S S的概率分布。

其他形式: v ˉ π = E [ ∑ t = 0 ∞ γ t R t + 1 ] \bar{v}_\pi = \mathbb{E} \Big[\sum_{t=0}^{\infin} \gamma^t R_{t+1} \Big] vˉπ=E[t=0γtRt+1]

向量形式: v ˉ π = d T v π \bar{v}_\pi = d^T v_\pi vˉπ=dTvπ

在常见的情况下, d d d是取决于 π \pi π的平稳分布,即 d π ( s ) d_\pi(s) dπ(s),其具有以下性质:
d π T P π = d π T d^T_\pi P_\pi = d^T_\pi dπTPπ=dπT
其中, P π P_\pi Pπ是状态转移概率矩阵。

目标函数2:平均单步奖励

平均单步奖励(average one-step reward / average reward)
r ˉ π = ∑ s ∈ S d ( s ) r π ( s ) = E [ r π ( S ) ] \bar{r}_\pi = \sum_{s\in{\mathcal{S}}} d(s) r_\pi(s) = \mathbb{E}[r_\pi(S)] rˉπ=sSd(s)rπ(s)=E[rπ(S)]
其中, S ∼ d π S \sim d_\pi Sdπ d π d_\pi dπ为平稳分布。 r π ( s ) = ∑ a ∈ A π ( a ∣ s ) r ( s , a ) r_\pi(s) = \sum_{a\in\mathcal{A}} \pi(a|s) r(s, a) rπ(s)=aAπ(as)r(s,a)为策略 π \pi π在状态 s s s下取得的平均单步奖励,而 r ( s , a ) = E [ R ∣ s , a ] = ∑ r r p ( r ∣ s , a ) r(s, a) = \mathbb{E} [R|s, a] = \sum_r r p(r | s, a) r(s,a)=E[Rs,a]=rrp(rs,a)

另一种形式:
假设agent遵循一个策略生成了奖励为 ( R t + 1 , R t + 2 , ⋯   ) (R_{t+1}, R_{t+2}, \cdots) (Rt+1,Rt+2,)的trajectory,其平均单步奖励为:
lim ⁡ n → ∞ 1 n E [ ∑ k = 1 n R t + k ∣ S t = s 0 ] \lim_{n\rarr\infin} \frac{1}{n} \mathbb{E} \Big[ \sum_{k=1}^{n} R_{t+k} | S_t = s_0 \Big] limnn1E[k=1nRt+kSt=s0]
其中, s 0 s_0 s0为该trajectory的起始状态。考虑无穷多步的极限,上式等价于【似乎是与平稳随机过程有关,时间平均等于统计平均,不确定】:
lim ⁡ n → ∞ 1 n E [ ∑ k = 1 n R t + k ] = r ˉ π \lim_{n\rarr\infin} \frac{1}{n} \mathbb{E} \Big[ \sum_{k=1}^{n} R_{t+k} \Big] = \bar{r}_\pi limnn1E[k=1nRt+k]=rˉπ

🟡PG梯度计算

策略梯度方法的梯度计算可以统一总结为下式:
∇ θ J ( θ ) = ∑ s ∈ S η ( s ) ∑ a ∈ A ∇ θ π ( a ∣ s , θ ) q π ( s , a ) \nabla_\theta J(\theta) = \sum_{s\in\mathcal{S}} \eta (s) \sum_{a\in\mathcal{A}} \nabla_\theta \pi (a|s, \theta) q_\pi(s, a) θJ(θ)=sSη(s)aAθπ(as,θ)qπ(s,a)
其中:

  • J ( θ ) J(\theta) J(θ)可以为 v ˉ π \bar{v}_\pi vˉπ r ˉ π \bar{r}_\pi rˉπ v ˉ π 0 \bar{v}_\pi^0 vˉπ0
  • = = =可以为相等、约等 ≈ \approx 、成比例 ∝ \propto
  • η \eta η是状态的分布或权重(如上文中的 d π d_\pi dπ

进一步地,可以基于下式计算梯度
∇ θ J ( θ ) = E [ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \nabla_\theta J(\theta) = \mathbb{E} [\nabla_\theta \ln\pi (A|S, \theta) q_\pi(S, A) ] θJ(θ)=E[θlnπ(AS,θ)qπ(S,A)]
其中, S ∼ η S\sim\eta Sη A ∼ π ( A ∣ S , θ ) A\sim\pi(A|S, \theta) Aπ(AS,θ)。通过随机采样的方式估计期望,则有:
∇ θ J ( θ ) ≈ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) \nabla_\theta J(\theta) \approx \nabla_\theta \ln\pi (A|S, \theta) q_\pi(S, A) θJ(θ)θlnπ(AS,θ)qπ(S,A)

注意:为了计算对数 ln ⁡ \ln ln,对所有的 s , a , θ s, a,\theta s,a,θ,策略必须满足: π ( a ∣ s , θ ) > 0 \pi(a|s, \theta) > 0 π(as,θ)>0。即:策略必须是随机性(stochastic)的,且为探索性(exploratory)的。(*确定性策略见后续介绍Actor-Critic的博文中的DPG)
这可以通过softmax实现,将向量从 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+)限界至 ( 0 , 1 ) (0,1) (0,1)。softmax限界后的形式为:
π ( a ∣ s , θ ) = e h ( s , a , θ ) ∑ a ′ ∈ A e h ( s , a ′ , θ ) \pi(a|s, \theta) = \frac{e^{h(s, a, \theta)}}{\textstyle\sum_{a' \in \mathcal{A}} e^{h(s, a', \theta)}} π(as,θ)=aAeh(s,a,θ)eh(s,a,θ)
其中, h ( s , a , θ ) h(s, a, \theta) h(s,a,θ)类似于特征函数,具体由神经网络确定。

推导:
已知 d ln ⁡ x d x = 1 x \frac{\mathrm{d} \ln x}{\mathrm{d} x} = \frac{1}{x} dxdlnx=x1,则 ∇ ln ⁡ f ( x ) = ∇ f ( x ) f ( x ) \nabla \ln f(x) = \frac{\nabla f(x)}{f(x)} lnf(x)=f(x)f(x),故有: ∇ θ ln ⁡ π ( a ∣ s , θ ) = ∇ θ π ( a ∣ s , θ ) π ( a ∣ s , θ ) \nabla_\theta \ln \pi(a|s, \theta) = \frac{\nabla_\theta \pi(a|s, \theta)}{\pi(a|s, \theta)} θlnπ(as,θ)=π(as,θ)θπ(as,θ)
进一步地, π \pi π的梯度可以计算为: ∇ θ π ( a ∣ s , θ ) = π ( a ∣ s , θ ) ∇ θ ln ⁡ π ( a ∣ s , θ ) {\nabla_\theta \pi(a|s, \theta)} = {\pi(a|s, \theta)} \nabla_\theta \ln \pi(a|s, \theta) θπ(as,θ)=π(as,θ)θlnπ(as,θ)
image.png

🟦REINFORCE

策略梯度(PG)方法基于梯度上升方法最大化目标函数:
θ t + 1 = θ t + α E [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) ] \theta_{t+1} = \theta_t + \alpha \mathbb{E} \big[ \nabla_\theta \ln\pi (A|S, \theta_t) q_\pi(S, A) \big] θt+1=θt+αE[θlnπ(AS,θt)qπ(S,A)]

实际中,通过随机采样的方式估计期望与 q π ( s t , a t ) q_\pi(s_t, a_t) qπ(st,at),有:
θ t + 1 = θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) q t ( s t , a t ) \theta_{t+1} = \theta_t + \alpha \nabla_\theta \ln\pi (a_t|s_t, \theta_t) q_t(s_t, a_t) θt+1=θt+αθlnπ(atst,θt)qt(st,at)

注意: A ∼ π ( A ∣ S , θ ) A\sim\pi(A|S,\theta) Aπ(AS,θ) a t a_t at的采样依赖于状态 s t s_t st下的策略 π ( θ t ) \pi(\theta_t) π(θt),因此策略梯度是on-policy方法。

估计 q π ( s t , a t ) q_\pi(s_t,a_t) qπ(st,at)有两种方法:

  • 蒙特卡洛(MC):REINFORCE(策略梯度的代表性算法)
  • 时序差分(TD):Actor-Critic系列算法(见后续博文)

REINFORCE算法步骤(伪代码):
初始化: π ( a ∣ s , θ ) \pi(a|s, \theta) π(as,θ) γ ∈ ( 0 , 1 ) \gamma \in (0,1) γ(0,1) α > 0 \alpha >0 α>0
目标:最大化 J ( θ ) J(\theta) J(θ)
步骤:在第 k k k次迭代中,选择策略 π ( θ k ) \pi(\theta_k) π(θk)的起始状态 s 0 s_0 s0,设其episode为 { s 0 , a 0 , r 1 , ⋯   , s T − 1 , a T − 1 , r T } \{ s_0, a_0, r_1, \cdots, s_{T-1}, a_{T-1}, r_T \} {s0,a0,r1,,sT1,aT1rT}

  • 在每个时间步 t = 0 , 1 , ⋯   , T − 1 t=0,1,\cdots,T-1 t=0,1,,T1
    • 值更新(蒙特卡洛方法): q t ( s t , a t ) = ∑ k = t + 1 T γ k − t − 1 r k q_t(s_t,a_t) = \textstyle \sum_{k=t+1}^T \gamma^{k-t-1} r_k qt(st,at)=k=t+1Tγkt1rk
    • 策略更新:更新参数 θ t + 1 \theta_{t+1} θt+1,公式见上
      • *注意:蒙特卡洛是offline的,需要整个episode的数据,所以这里更新完参数后不立即使用策略去采集数据
  • θ k = θ T \theta_k = \theta_T θk=θT,在下次迭代中生成下一组episode的数据

http://www.niftyadmin.cn/n/5310698.html

相关文章

基于深度学习大模型实现离线翻译模型私有化部署使用,通过docker打包开源翻译模型,可到内网或者无网络环境下运行使用,可以使用一千多个翻译模型语言模型进行翻译

基于深度学习大模型实现离线翻译模型私有化部署使用,通过docker打包开源翻译模型,可到内网或者无网络环境下运行使用,可以使用一千多个翻译模型语言模型进行翻译,想要什么语种直接进行指定和修改就行。 环境要求,电脑内存低于8G建议不要尝试了,有无GPU都可以运行,但是有…

服务器日常怎么维护 有哪些

服务器日常维护主要包含两位部分&#xff1a;硬件维护和软件维护。硬件维护 硬件维护就是指对服务器的硬件进行检测&#xff0c;更换&#xff0c;升级&#xff0c;最常见的是防火墙更新&#xff0c;时刻能够应对市场上的变化。 也包含服务器环境的一些维护&#xff0c;定期检查…

(更新)2003-2021年《中国教育统计年鉴》Excel面板数据

数据简介&#xff1a;《中国教育统计年鉴》是一本全面反映中华人民共和国历年教育事业发展情况的资料性年鉴&#xff0c;是由教育部发展规划司根据全国各省、自治区、直辖市教育委员会、教育厅填报的学校基层报表数字整理汇编而成的。 本年鉴包括以下部分&#xff1a;综合部分…

[易语言]使用易语言部署yolov8-onnx模型

【官方框架地址】 github地址&#xff1a;https://github.com/ultralytics/ultralytics 【易语言介绍】 易语言作为一种中国自主研发的编程语言&#xff0c;具有其独特的优点和缺点。以下是对易语言的优缺点的详细分析&#xff1a; 优点&#xff1a; 简单易学&#xff1a;易…

pytorch07:损失函数与优化器

目录 一、损失函数是什么二、常见的损失函数2.1 nn.CrossEntropyLoss交叉熵损失函数2.1.1 交叉熵的概念2.2.2 交叉熵代码实现2.2.3 加权重损失 2.2 nn.NLLLoss2.2.1 代码实现 2.3 nn.BCELoss2.3.1 代码实现 2.4 nn.BCEWithLogitsLoss2.4.1 代码实现 三、优化器Optimizer3.1 什么…

自动驾驶HWP的功能定义

一、功能定义 高速路自动驾驶功能HWP是指在一般畅通高速公路或城市快速路上驾驶员可以放开双手双脚&#xff0c;同时注意力可在较长时间内从驾驶环境中转移&#xff0c;做一些诸如看手机、接电话、看风景等活动&#xff0c;该系统最低工作速度为60kph。 如上两种不同环境和速度…

数据库原理与应用期末复习试卷1

数据库原理与应用期末复习试卷1 一.单项选择题 数据库系统是采用了数据库技术的计算机系统&#xff0c;由系统数据库&#xff0c;数据库管理系统&#xff0c;应用系统和&#xff08;C&#xff09;组成。 ​ A.系统分析员 B.程序员 C.数据库管理员 D.操作员 数据库系统的体系…

SpringCloud系列篇:核心组件之配置中心组件

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于SpringCloud的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.前言 二.配置中心组件是什么 三…