强化学习应用(五):基于Q-learning的无人机物流路径规划研究(提供Python代码)

一、Q-learning简介

Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。

Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下:

1. 初始化Q值表格,将所有Q值初始化为0。

2. 在每个时间步骤t,智能体观察当前状态st,并根据当前Q值表格选择一个动作at。选择动作的方法可以是ε-greedy策略,即以ε的概率随机选择一个动作,以1-ε的概率选择当前Q值最大的动作。

3. 执行动作at,观察环境反馈的奖励rt+1和下一个状态st+1。

4. 根据Q-learning更新规则更新Q值表格中的Q值:

  Q(st, at) = Q(st, at) + α * (rt+1 + γ * max(Q(st+1, a)) - Q(st, at))

  其中,α是学习率,γ是折扣因子,用于平衡当前奖励和未来奖励的重要性。

5. 重复步骤2-4,直到达到停止条件(例如达到最大迭代次数或Q值收敛)。

Q-learning算法的目标是通过不断更新Q值表格,使得智能体能够在环境中找到最优策略,以最大化累积奖励。

二、无人机物流路径规划

无人机物流路径规划是指利用无人机进行货物运输时,通过算法和技术使其无人机将所有货物运送到指定位置,并返回起点,并得到最优飞行路径,以实现高效、安全和准确的货物运输。无人机物流路径规划可以简单抽象为旅行商问题(Traveling Salesman Problem, TSP)。TSP是一个经典的组合优化问题,它的目标是找到一条路径,使得旅行商从起点出发,经过所有城市恰好一次,最后回到起点,并且总路径长度最短。解决TSP问题的方法有很多,其中一种常用的方法是蚁群算法。除了蚁群算法,还有其他一些常用的解决TSP问题的方法,如遗传算法、动态规划和强化学习等。强化学习求解TSP问题思路新颖,具有一定优势。

三、Q-learning求解无人机物流路径规划

1、部分代码

可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。

import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=36 #当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=1000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标


## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='red')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()


2、部分结果

(1)以国际通用的TSP实例库TSPLIB中的测试集bayg29为例:



Qlearning算法得到的最短路线: [1, 28, 6, 12, 9, 26, 29, 3, 5, 21, 2, 20, 10, 4, 15, 18, 14, 22, 17, 11, 19, 25, 7, 23, 27, 8, 24, 16, 13, 1]

(2)随机生成27个城市

Qlearning算法得到的最短路线: [1, 18, 10, 21, 13, 26, 17, 2, 4, 7, 27, 25, 20, 3, 22, 5, 9, 8, 16, 15, 23, 12, 14, 6, 11, 19, 24, 1]

(3)随机生成17个城市

Qlearning算法得到的最短路线: [1, 2, 13, 8, 3, 11, 14, 10, 5, 6, 12, 17, 4, 16, 15, 9, 7, 1]

四、完整Python代码


http://www.niftyadmin.cn/n/5331799.html

相关文章

Spring Boot整和MyBatis!!!

目标&#xff1a; 实现添加功能实现查询功能实现删除功能实现修改功能添加日期转换器 1.搭建项目 1.1pom文件&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><vers…

Vue-23、Vue收集表单数据

1、效果 2、代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>收集表单数据</title><script type"text/javascript" src"https://cdn.jsdelivr.net/npm/vue2/dist/vue.js…

性能优化-一文宏观理解OpenCL

本文主要对OpenCL做一个整体的介绍、包括环境搭建、第一个OpenCL程序、架构、优化策略&#xff0c;希望对读者有所收获。 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&#xff09;开发基础…

OpenCV-21方盒滤波和均值滤波

一、方和滤波 使用API --- boxFiter(src, ddepth, ksize[,dst[,anchor[, normalize[, borderType]]]])方盒滤波 方盒滤波的卷积核如下所示&#xff1a; --- normalize Ture时&#xff0c; a 1 / &#xff08;W*H&#xff09;滤波器的宽高 --- normalize False时&#xff…

Python教程(25)——Python中参数类型详解

当我们在编写函数时&#xff0c;会定义一些占位符&#xff0c;这些占位符就是参数&#xff0c;参数是函数定义中用于接收外部传递值的占位符&#xff0c;这个会帮助我们在函数被调用时接收外部传递的值。在Python当中&#xff0c;有各种各样类型的参数&#xff0c;主要有位置参…

自动驾驶轨迹规划之碰撞检测(一)

欢迎大家关注我的B站&#xff1a; 偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com) 目录 1.碰撞检测的意义 2.安全走廊 3 计算几何 4 AABB与OBB 1.碰撞检测的意义 对于自动驾驶汽车或机器人的路径规划&#xff0c;碰撞检测是其…

day20【LeetCode力扣】142.环形链表Ⅱ

day20【LeetCode力扣】142.环形链表Ⅱ 1.题目描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了…

SpringBoot 源码解析4:refresh 方法解析

SpringBoot 源码解析4&#xff1a;refresh 方法解析 1. refresh 方法解析2. 准备刷新 AbstractApplicationContext#prepareRefresh3. 获取bean工厂 AbstractApplicationContext#obtainFreshBeanFactory4. 准备bean工厂 AbstractApplicationContext#prepareBeanFactory5. Servle…