强化学习_06_pytorch-PPO实践(Hopper-v4)

news/2024/5/18 23:44:06 标签: pytorch, 人工智能, python, 深度学习, 强化学习

一、PPO优化

PPO的简介和实践可以看笔者之前的文章 强化学习_06_pytorch-PPO实践(Pendulum-v1)
针对之前的PPO做了主要以下优化:

  1. batch_normalize: 在mini_batch 函数中进行adv的normalize, 加速模型对adv的学习
  2. policyNet采用beta分布(0~1): 同时增加MaxMinScale 将beta分布产出值转换到action的分布空间
  3. 收集多个episode的数据,依次计算adv,后合并到一个dataloader中进行遍历:加速模型收敛

1.1 PPO2 代码

详细可见 Github: PPO2.py

python">class PPO2:
    """
    PPO2算法, 采用截断方式
    """
    def __init__(self,
                state_dim: int,
                actor_hidden_layers_dim: typ.List,
                critic_hidden_layers_dim: typ.List,
                action_dim: int,
                actor_lr: float,
                critic_lr: float,
                gamma: float,
                PPO_kwargs: typ.Dict,
                device: torch.device,
                reward_func: typ.Optional[typ.Callable]=None
                ):
        dist_type = PPO_kwargs.get('dist_type', 'beta')
        self.dist_type = dist_type
        self.actor = policyNet(state_dim, actor_hidden_layers_dim, action_dim, dist_type=dist_type).to(device)
        self.critic = valueNet(state_dim, critic_hidden_layers_dim).to(device)
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr
        self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)

        self.gamma = gamma
        self.lmbda = PPO_kwargs['lmbda']
        self.k_epochs = PPO_kwargs['k_epochs'] # 一条序列的数据用来训练的轮次
        self.eps = PPO_kwargs['eps'] # PPO中截断范围的参数
        self.sgd_batch_size = PPO_kwargs.get('sgd_batch_size', 512)
        self.minibatch_size = PPO_kwargs.get('minibatch_size', 128)
        self.action_bound = PPO_kwargs.get('action_bound', 1.0)
        self.action_low = -1 * self.action_bound 
        self.action_high = self.action_bound
        if 'action_space' in PPO_kwargs:
            self.action_low = self.action_space.low
            self.action_high = self.action_space.high
        
        self.count = 0 
        self.device = device
        self.reward_func = reward_func
        self.min_batch_collate_func = partial(mini_batch, mini_batch_size=self.minibatch_size)
    
    def _action_fix(self, act):
        if self.dist_type == 'beta':
            # beta 0-1 -> low ~ high
            return act * (self.action_high - self.action_low) + self.action_low
        return act 
    
    def _action_return(self, act):
        if self.dist_type == 'beta':
            # low ~ high -> 0-1 
            act_out = (act - self.action_low) / (self.action_high - self.action_low)
            return act_out * 1 + 0
        return act 

    def policy(self, state):
        state = torch.FloatTensor(np.array([state])).to(self.device)
        action_dist = self.actor.get_dist(state, self.action_bound)
        action = action_dist.sample()
        action = self._action_fix(action)
        return action.cpu().detach().numpy()[0]
    
    def _one_deque_pp(self, samples: deque):
        state, action, reward, next_state, done = zip(*samples)
        state = torch.FloatTensor(np.stack(state)).to(self.device)
        action = torch.FloatTensor(np.stack(action)).to(self.device)
        reward = torch.tensor(np.stack(reward)).view(-1, 1).to(self.device)
        if self.reward_func is not None:
            reward = self.reward_func(reward)

        next_state = torch.FloatTensor(np.stack(next_state)).to(self.device)
        done = torch.FloatTensor(np.stack(done)).view(-1, 1).to(self.device)
        
        old_v = self.critic(state)
        td_target = reward + self.gamma * self.critic(next_state) * (1 - done)
        td_delta = td_target - old_v
        advantage = compute_advantage(self.gamma, self.lmbda, td_delta, done).to(self.device)
        # recompute
        td_target = advantage + old_v
        action_dists = self.actor.get_dist(state, self.action_bound)
        old_log_probs = action_dists.log_prob(self._action_return(action))
        return state, action, old_log_probs, advantage, td_target
        
    def data_prepare(self, samples_list: List[deque]):
        state_pt_list = []
        action_pt_list = []
        old_log_probs_pt_list = []
        advantage_pt_list = []
        td_target_pt_list = []
        for sample in samples_list:
            state_i, action_i, old_log_probs_i, advantage_i, td_target_i = self._one_deque_pp(sample)
            state_pt_list.append(state_i)
            action_pt_list.append(action_i)
            old_log_probs_pt_list.append(old_log_probs_i)
            advantage_pt_list.append(advantage_i)
            td_target_pt_list.append(td_target_i)
            
        state = torch.concat(state_pt_list) 
        action = torch.concat(action_pt_list) 
        old_log_probs = torch.concat(old_log_probs_pt_list) 
        advantage = torch.concat(advantage_pt_list) 
        td_target = torch.concat(td_target_pt_list)
        return state, action, old_log_probs, advantage, td_target
        
    def update(self, samples_list: List[deque]):
        state, action, old_log_probs, advantage, td_target = self.data_prepare(samples_list)
        if len(old_log_probs.shape) == 2:
            old_log_probs = old_log_probs.sum(dim=1)
        d_set = memDataset(state, action, old_log_probs, advantage, td_target)
        train_loader = DataLoader(
            d_set,
            batch_size=self.sgd_batch_size,
            shuffle=True,
            drop_last=True,
            collate_fn=self.min_batch_collate_func
        )
        
        for _ in range(self.k_epochs):
            for state_, action_, old_log_prob, adv, td_v in train_loader:
                action_dists = self.actor.get_dist(state_, self.action_bound)
                log_prob = action_dists.log_prob(self._action_return(action_))
                if len(log_prob.shape) == 2:
                    log_prob = log_prob.sum(dim=1)
                # e(log(a/b))
                ratio = torch.exp(log_prob - old_log_prob.detach())
                surr1 = ratio * adv
                surr2 = torch.clamp(ratio, 1 - self.eps, 1 + self.eps) * adv

                actor_loss = torch.mean(-torch.min(surr1, surr2)).float()
                critic_loss = torch.mean(
                    F.mse_loss(self.critic(state_).float(), td_v.detach().float())
                ).float()

                self.actor_opt.zero_grad()
                self.critic_opt.zero_grad()
                actor_loss.backward()
                critic_loss.backward()
                torch.nn.utils.clip_grad_norm_(self.actor.parameters(), 0.5) 
                torch.nn.utils.clip_grad_norm_(self.critic.parameters(), 0.5) 
                self.actor_opt.step()
                self.critic_opt.step()

        return True

    def save_model(self, file_path):
        if not os.path.exists(file_path):
            os.makedirs(file_path)

        act_f = os.path.join(file_path, 'PPO_actor.ckpt')
        critic_f = os.path.join(file_path, 'PPO_critic.ckpt')
        torch.save(self.actor.state_dict(), act_f)
        torch.save(self.critic.state_dict(), critic_f)

    def load_model(self, file_path):
        act_f = os.path.join(file_path, 'PPO_actor.ckpt')
        critic_f = os.path.join(file_path, 'PPO_critic.ckpt')
        self.actor.load_state_dict(torch.load(act_f, map_location='cpu'))
        self.critic.load_state_dict(torch.load(critic_f, map_location='cpu'))
        self.actor.to(self.device)
        self.critic.to(self.device)
        self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=self.actor_lr)
        self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=self.critic_lr)

    def train(self):
        self.training = True
        self.actor.train()
        self.critic.train()

    def eval(self):
        self.training = False
        self.actor.eval()
        self.critic.eval()

二、 Pytorch实践

2.1 智能体构建与训练

PPO2主要是收集多轮的结果序列进行训练,增加训练轮数,适当降低学习率,稍微增Actor和Critic的网络深度
详细可见 Github: test_ppo.Hopper_v4_ppo2_test

python">import os
from os.path import dirname
import sys
import gymnasium as gym
import torch
# 笔者的github-RL库
from RLAlgo.PPO import PPO
from RLAlgo.PPO2 import PPO2
from RLUtils import train_on_policy, random_play, play, Config, gym_env_desc

env_name = 'Hopper-v4'
gym_env_desc(env_name)
print("gym.__version__ = ", gym.__version__ )
path_ = os.path.dirname(__file__) 
env = gym.make(
    env_name, 
    exclude_current_positions_from_observation=True,
    # healthy_reward=0
)
cfg = Config(
    env, 
    # 环境参数
    save_path=os.path.join(path_, "test_models" ,'PPO_Hopper-v4_test2'), 
    seed=42,
    # 网络参数
    actor_hidden_layers_dim=[256, 256, 256],
    critic_hidden_layers_dim=[256, 256, 256],
    # agent参数
    actor_lr=1.5e-4,
    critic_lr=5.5e-4,
    gamma=0.99,
    # 训练参数
    num_episode=12500,
    off_buffer_size=512,
    off_minimal_size=510,
    max_episode_steps=500,
    PPO_kwargs={
        'lmbda': 0.9,
        'eps': 0.25,
        'k_epochs': 4, 
        'sgd_batch_size': 128,
        'minibatch_size': 12, 
        'actor_bound': 1,
        'dist_type': 'beta'
    }
)
agent = PPO2(
    state_dim=cfg.state_dim,
    actor_hidden_layers_dim=cfg.actor_hidden_layers_dim,
    critic_hidden_layers_dim=cfg.critic_hidden_layers_dim,
    action_dim=cfg.action_dim,
    actor_lr=cfg.actor_lr,
    critic_lr=cfg.critic_lr,
    gamma=cfg.gamma,
    PPO_kwargs=cfg.PPO_kwargs,
    device=cfg.device,
    reward_func=None
)
agent.train()
train_on_policy(env, agent, cfg, wandb_flag=False, train_without_seed=True, test_ep_freq=1000, 
                 online_collect_nums=cfg.off_buffer_size,
                 test_episode_count=5)

2.2 训练出的智能体观测

最后将训练的最好的网络拿出来进行观察

python">agent.load_model(cfg.save_path)
agent.eval()
env_ = gym.make(env_name, 
                exclude_current_positions_from_observation=True,
                render_mode='human'
                ) # , render_mode='human'
play(env_, agent, cfg, episode_count=3, play_without_seed=True, render=True)

在这里插入图片描述


http://www.niftyadmin.cn/n/5410111.html

相关文章

【MySQL 系列】在 CentOS 上安装 MySQL

CentOS 是一个使用非常广泛的 Linux 发行版,CentOS 属于 RedHat 架构。本篇文章中,我们展示了在 CentOS 8/7/6 上安装 MySQL 8 的详细步骤。 文章目录 1、先决条件2、在 CentOS 中安装 MySQL2.1、下载安装 MySQL Yum 仓库2.2、安装 MySQL 8 社区服务器2.…

前端程序员如何使用GPT

前端程序员如何使用GPT GPT自述 GPT(Generative Pre-trained Transformer)是一种基于深度学习的自然语言处理模型,它在近年来取得了非常显著的成果。许多前端程序员也开始尝试使用GPT来提升工作效率和创造力。那么,前端程序员如何…

文件自动备份技巧

自动备份:守护数据的必备之选 在数字化时代,文件已成为我们生活和工作中不可或缺的一部分。然而,数据的丢失或损坏往往会给个人和企业带来不可估量的损失。因此,文件自动备份的重要性愈发凸显。自动备份不仅能够确保数据的安全性…

uniApp h5解决Chrome跨域问题的最终方法

最近用Dcloud 工具 HBuilder X写了一个uniapp 客户端项目,代码在HBuilder 工具内运行没有问题, 打包后放在android app 和ios app内运行也没有问题,唯有把h5链接地址放在chrome里会有如下跨域问题: Access to XMLHttpRequest at …

持续集成(CICD)- Jenkins+Git+gogs综合实战(笔记二)

文章目录 七、拉取代码方法一:直接填写命令进行拉取(不建议用这种)方法二:使用源码管理拉取代码步骤一:确认环境(检查自己是否有Git插件)步骤二:构建项目时对项目的源码管理选择 Git步骤三:输入你仓库的SSH地址或者https地址,并且添加gitee的用户名和密方法一和方法二…

【C#面向对象设计模式】03. Abstract Factory 抽象工厂(创建型模式)

【C#面向对象设计模式】03. Abstract Factory 抽象工厂(创建型模式) 一、new的问题 常规的对象创建方法: //创建一个Road对象 Road road new Road();new的问题: 实现依赖,不能应对“具体实例化类型”的变化。&…

msvcr120.dll丢失怎样修复,更了解msvcr120.dll文件从而解决丢失问题

在电脑使用过程中,"msvcr120.dll丢失"是常见的错误提示之一。那么,今天就和大家聊聊msvcr120.dll文件,如果msvcr120.dll文件丢失的问题时什么原因导致的,让我们仔细来看一下msvcr120.dll是什么以及msvcr120.dll丢失怎样…

人工智能-飞桨

文章目录 概要安装零基础教程基础知识小结 概要 集核心框架、基础模型库、端到端开发套件、丰富的工具组件于一体的深度学习平台 官方入口 安装 python安装 python官方下载 PaddlePaddle安装 python -m pip install paddlepaddle2.6.0 -i https://mirror.baidu.com/pypi/s…