【算法系列】归并排序详解

news/2025/2/26 16:46:13

文章目录

  • 归并排序详解
    • 1. 基本原理
      • 1.1 分治法策略
      • 1.2 归并排序步骤
      • 1.3 图解示例
    • 2. 时间复杂度与空间复杂度
      • 2.1 时间复杂度
      • 2.2 空间复杂度
    • 3. 稳定性
    • 4. Java 实现示例
    • 5. 归并排序的优点与缺点
      • 5.1 优点
      • 5.2 缺点
    • 6. 总结

归并排序详解

归并排序(Merge Sort)是一种基于分治法的经典排序算法。它通过递归地将数组分成较小的子数组,分别对这些子数组进行排序,然后将它们合并以产生最终的有序数组。归并排序以其稳定性和在最坏情况下的高效性能而著称。

1. 基本原理

1.1 分治法策略

归并排序的核心思想是分治法,即将一个问题分解成若干个规模更小但类似的子问题,递归地解决这些子问题,然后将结果合并以得到原问题的解。

1.2 归并排序步骤

  1. 分割:将数组不断分割成两个大致相等的部分,直到每个部分只有一个元素。
  2. 排序:对每个单独的元素视为已排序的部分。
  3. 合并:将两个已排序的子数组合并成一个更大的已排序数组,直到整个数组排序完成。

1.3 图解示例

假设我们有一个数组 [8, 4, 5, 7, 1, 3, 6, 2],以下是归并排序的过程:
在这里插入图片描述

2. 时间复杂度与空间复杂度

2.1 时间复杂度

  • 最好、平均和最坏情况:O(n log n)
  • 每次分割操作的时间复杂度为 O(log n),每次合并操作的时间复杂度为 O(n)。

2.2 空间复杂度

  • 空间复杂度:O(n)
  • 需要额外的空间来存储临时数组,在合并过程中使用。

3. 稳定性

归并排序是稳定的排序算法,即相同值的相对位置不会改变。

4. Java 实现示例

java">public static void mergeSort(int[] arr) {
    int[] temp = new int[arr.length];
    mergeSort(arr, 0, arr.length - 1, temp);
}

private static void mergeSort(int[] arr, int l, int r, int[] temp) {
    if(l < r) {
        int m = (l + r) / 2;
        mergeSort(arr, l, m, temp);
        mergeSort(arr, m + 1, r, temp);
        merge(arr, l, m, r, temp);
    }
}

private static void merge(int[] arr, int l, int m, int r, int[] temp) {
    int i = l; // 左序列指针
    int j = m + 1; // 右序列指针
    int k = l;
    while(i <= m && j <= r) {
        if(arr[i] <= arr[j]) {
            temp[k++] = arr[i++];
        } else {
            temp[k++] = arr[j++];
        }
    }

    // 左序列剩余元素填充至临时数组
    while(i <= m) {
        temp[k++] = arr[i++];
    }

    // 右序列剩余元素填充至临时数组
    while(j <= r) {
        temp[k++] = arr[j++];
    }

    // 将临时数组的数据拷贝至原数组
    k = l;
    while(k <= r) {
        arr[k] = temp[k++];
    }
}

5. 归并排序的优点与缺点

5.1 优点

稳定性:归并排序是稳定的排序算法,适合对稳定性有要求的应用场景。
时间复杂度:无论数据是否有序,归并排序的时间复杂度始终为 O(n log n),这使得它在处理大规模数据时表现良好。
适用范围广:适用于各种类型的数据集,尤其是当数据量较大且需要稳定排序时。

5.2 缺点

空间复杂度较高:归并排序需要额外的 O(n) 空间来存储临时数组,这在内存有限的情况下可能是一个限制。
递归调用栈深度:递归调用栈的深度为 O(log n),在极端情况下可能导致栈溢出。

6. 总结

归并排序是一种非常高效的排序算法,特别适合处理大规模数据集。尽管它的空间复杂度较高,但由于其稳定性和一致的时间复杂度,使其成为许多实际应用中的首选排序算法之一。


http://www.niftyadmin.cn/n/5868949.html

相关文章

C#快速调用DeepSeek接口,winform接入DeepSeek查询资料 C#零门槛接入DeepSeek C#接入DeepSeek源代码下载

下载地址<------完整源码 在数字化转型加速的背景下&#xff0c;企业应用系统对智能服务的需求日益增长。DeepSeek作为先进的人工智能服务平台&#xff0c;其自然语言处理、图像识别等核心能力可显著提升业务系统的智能化水平。传统开发模式下&#xff0c;C#开发者需要耗费大…

spark的一些指令

一&#xff0c;复制和移动 1、复制文件 格式&#xff1a;cp 源文件 目标文件 示例&#xff1a;把file1.txt 复制一份得到file2.txt 。那么对应的命令就是&#xff1a;cp file1.txt file2.txt 2、复制目录 格式&#xff1a;cp -r 源文件 目标文件夹 示例&#xff1a;把目…

基于MATLAB的OFDM通信系统仿真设计

下面将为你详细介绍基于MATLAB的OFDM通信系统仿真设计的步骤和示例代码。 1. OFDM系统原理概述 正交频分复用&#xff08;OFDM&#xff09;是一种多载波调制技术&#xff0c;它将高速数据流通过串并转换&#xff0c;分配到多个正交的子载波上进行传输&#xff0c;这样可以有效…

MongoDB私人学习笔记

俗话说“好记性不如烂笔头”&#xff0c;编程的海洋如此的浩大&#xff0c;养成做笔记的习惯是成功的一步&#xff01; 此笔记主要是ZooKeeper3.4.9版本的笔记&#xff0c;并且笔记都是博主自己一字一字编写和记录&#xff0c;有错误的地方欢迎大家指正。 一、基础知识&#xf…

学习路程五 向量数据库Milvus操作

前序 前面安装好了docker且成功拉取Milvus镜像&#xff0c;启动。通过python成功连接上了数据。接下来就继续更多Milvus的操作 在开始之前&#xff0c;先来简单了解一下向量数据库内一些东西的基本概念 概念描述数据库&#xff08;Database&#xff09;类似与MySQL的database…

本地部署deepseek大模型后使用c# winform调用(可离线)

介于最近deepseek的大火&#xff0c;我就在想能不能用winform也玩一玩本地部署&#xff0c;于是经过查阅资料&#xff0c;然后了解到ollama部署deepseek,最后用ollama sharp NUGet包来实现winform调用ollama 部署的deepseek。 本项目使用Vs2022和.net 8.0开发&#xff0c;ollam…

矩阵的 正定(Positive Definite)与负定(Negative Definite):从Fisher信息矩阵看“曲率”的秘密

矩阵的正定与负定&#xff1a;从Fisher信息矩阵看“曲率”的秘密 在数学和统计学中&#xff0c;矩阵的“正定性”和“负定性”是一对重要概念&#xff0c;尤其在优化、统计推断和机器学习中频繁出现。比如&#xff0c;Fisher信息矩阵&#xff08;Fisher Information Matrix, F…

STM32 缺一不可的最基础的初始化部分

STM32 缺一不可的最基础的初始化部分 初始化部分必须初始化作用关键配置系统时钟&#xff08;RCC&#xff09;​所有STM32程序的基础为CPU、总线和外设提供时钟信号1.选择时钟源&#xff08;HSI/HSE/PLL&#xff09; 2.配置系统时钟频率&#xff08;如168MHz&#xff09; 3.使…